The correct option is
D 23Let the solution of first equation be
a,band for 2nd equation be a,c
Given, ab+ac+a2+ba+bc+ac=192
2a(b+c)+a2+bc=192 ..... (1)
Now, x2−15x+56=0 has uncommon roots, i.e. b,c
So, in eq (1) we can substitute b+c=15,bc=56 and obtain,
2a(15)+a2+56=192
⇒a=4 (positive root)
So, sum of all 4 roots is
2a+(b+c)=8+(15)=23