The correct option is B PbCl2 will not precipitate out from the resultant solution.
We know,
[c]=nV
n=[c]×V
c1=3.0×10−2 M
V1=0.15 L
Putting the values,
n1=3.0×10−2×0.15=4.5×10−3 mol
Moles of Pb(NO3)2=4.5×10−3 mol
c2=8.0×10−2 M
V2=0.30 L
Putting the values,
n2=8.0×10−2×0.30=2.4×10−2 mol
Moles of NaCl=2.4×10−2 mol
Total volume=V1+V2=0.45 L
[Pb2+]=n1V
[Pb2+]=4.5×10−30.45=0.010 M
[Cl−]=n2V
[Cl−]=2.4×10−20.45=0.053 M
For PbCl2,
PbCl2(s)⇌Pb2+(aq)+2Cl−(aq)[ ]i00[ ]e+0.010+0.053[ ]e0.0100.053
Qsp=[Pb2+]×[Cl−]2
Qsp=0.010×0.0532=2.8×10−5
But, given:
Ksp=2.4×10−4
No precipitation of PbCl2 will occur because Qsp<Ksp.