1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Summation by Sigma Method
n →∞lim1P + 2...
Question
l
i
m
n
→
∞
1
P
+
2
P
+
3
P
+
.
.
.
.
+
n
P
n
P
+
1
equals-
Open in App
Solution
l
i
m
n
→
∞
1
P
+
2
P
+
3
P
+
.
.
.
.
+
n
P
n
P
+
1
=
l
i
m
n
→
∞
1
n
1
P
+
2
P
+
3
P
+
.
.
.
.
+
n
P
n
P
=
l
i
m
n
→
∞
1
n
(
1
P
n
p
+
2
P
n
p
+
3
P
n
P
+
.
.
.
.
+
n
P
n
P
)
=
l
i
m
n
→
∞
1
n
n
∑
r
=
1
(
r
n
)
P
=
1
∫
0
x
P
d
x
[ From the definition of the definite integral]
=
1
P
+
1
.
Suggest Corrections
0
Similar questions
Q.
lim
n
→
∞
1
P
+
2
P
+
3
P
+
.
.
.
.
.
.
.
+
n
P
n
P
+
1
equals -
Q.
lim
n
→
∞
1
p
+
2
p
+
3
p
+
.
.
.
.
.
.
+
n
p
n
p
+
1
is equal to (p
≠
-1)
Q.
lim
n
→
∞
1
p
+
2
p
+
3
p
+
.
.
.
+
n
p
n
p
+
1
is
Q.
lim
x
→
∞
1
p
+
2
p
+
3
p
+
…
…
+
n
p
n
p
+
1
is
Q.
l
i
m
π
→
∞
1
ρ
+
2
ρ
+
3
ρ
+
⋯
+
n
ρ
n
ρ
+
1
=
[AIEEE 2002]