wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Use identity csc2A=1+cot2A and prove that cosAsinA+1cosA+sinA1=cscA+cotA

Open in App
Solution

L.H.S=cosAsinA+1cosA+sinA1
Divide and multiply by sinA
cscA+cotA1cscAcotA+1 using identity csc2Acot2A=1
cscA+cotA(csc2Acot2A)cscAcotA+(csc2Acot2A)
cscA+cotA(cscA+cotA)(cscAcotA)cscAcotA+(cscA+cotA)(cscAcotA)
[1(cscAcotA)]×(cscA+cotA)cotAcscA+1
=cscA+cotA
=R.H.S
hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon