wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Use the substitution u=ex to evaluate
10sechxdx

Open in App
Solution

Formula: 1. sechx=1coshx=2ex+ex
2. ba1x2+a2=|1atan1x|ba

10sechxdx
102ex+exdx
102exe2x+1dx...(i)

Let, u=ex
On differentiating u w.r.t X, we get
dudx=ex
du=exdx

Lower limit: at x=0, u=e0=1
Upper limit: at x=1, u=e1=e

Substituting the above values in equation (i), we obtain
e12u2+1du
2×|tan1u|e1
2×(tan1etan11)
2(tan1eπ4)

Therefore, 10sechxdx=2(tan1eπ4)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon