Using binomial theorem evaluate each of the following:
(i)(96)3(ii)(102)5(iii)(101)4(iv)(98)5
(96)3
We have,
(96)3=(100−4)3
=3C0×1003+3C1×1002×(−4)+3C2×100×(−4)2+3C3×(−4)3
=1003−3×1002×4+3×100×42−43
=1000000 -120000+4800-64
=1004800-120064
=884736
∴(96)3=884736
(ii)(102)5
We have,
(102)5=(100+2)5
=5C0×1005+5C1×1004×2+5C2×1003×22+5C3×1002×23+5C4×100×24+5C5×25
=1005+5×1004×2+10×1003×22+10×1002×23+5×100×24+25
=10000000000+1000000000+40000000+800000+8000+32
=11040808032
∴(102)5=11040808032
(iii)(101)4
We have,
(101)4=(100+1)4
=4C0×1004+4C1×1003×4C2×1002+4C3×100+4C4
=1004+4×1003+6×1002+4×100+1
=100000000+4000000+60000+400+1
=104060401
∴(101)4=104060401
(iv)(98)5
We have,
=5C0×1005+5C1×1004×(−2)+5C2×1003+(−2)2+5C3×1002×(−2)3+5C4×100×(−2)4+5C5×(−2)5
=5C0×1005−5C1×1004×2+5C2×1003×4−5C3×1002×8+5C4×100×16−5C5×32
=1005−10×1004+40×1003−80×1002+80×100−32
=10000000000-1000000000+40000000-800000+8000-32
=10040008000-1000800032
=9039207968
∴(98)5=9039207968