The correct option is A x=−3,y=2
15x+11y=−23---(1)
−2x+7y=20---(2)
Using formula for cross multiplication method:
x(b1c2−b2c1)=y(c1a2−a1c2)=−1(a1b2−a2b1)
So, from equation (1) and (2) we can write the value of a,b and c.
x11×20−7×−23=y(−23)×(−2)−15×20=−115×7−(−2)×11
x220+161=y46−300=−1105+22
x381=y−254=−1127
x381=−1127
127x=−381
x=−3
y−254=−1127
127y=254
y=2
Therefore, x=−3,y=2