Using differentials, find the approximate value of each of the following:
(1781)14
(33)−15
Consider f(x)=x14⇒f′(x)=14x−34
Let x=1681 and Δx=181,
Now, f′(x+Δx)≃f(x)+Δx f′(x)
⇒(1681+181)14≃(1681)14+1814(1681)34
⇒(1781)14≃23+181×4×(23)3=23+196=6596
Hence, (1781)14≃0.677.
Consider f(x)=x−15⇒f′(x)=−15x−65
Let x=32 and Δx=1,
Now, f(x+Δx)≃f(x)+Δxf′(x)
⇒(x+Δx)−15≃x−15−15x65Δx⇒(33)−15≃(32)−15−15(32)65=12−15×26=0.5−1320=0.5−0.003⇒(33)−15≃0.497
Hence, the approximate value of (33)−15 is 0.497