Using differentials, find the approximate values of the following:
(iv) √401
Open in App
Solution
Let y=√x⇒dydx=12√x
And x =400 and Δx=1
Then, Δy=√x+Δx−√x ⇒Δy=√400+1−√400 ⇒Δy=√401−20 ⇒√401=20+Δy ...(1)
Now, approximate change in value of y is given by, ∵Δy≈(dydx)×Δx ⇒Δy≈12√x×Δx ⇒Δy≈12√400×1≈0.025
From equation(1) √401≈20+0.025 ∴√401≈20.025