wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using elementary transformations, find the inverse of matrix132305250, if it exists.


Open in App
Solution

Let A=132305250
We know that A=IA
132305250=100010001A
Applying R2R2+3R1
1323+3(1)0+3(3)5+3(2)250=1000+3(1)1+3(0)0+3(0)001A
1320911250=100310001A
Applying R3R32R1
132091122(1)52(3)02(2)=10031002(1)02(0)12(0)A
1320911014=100310201A
Applying R219R2
⎢ ⎢ ⎢13201119014⎥ ⎥ ⎥=⎢ ⎢ ⎢10013190201⎥ ⎥ ⎥A
Applying R3R3+R2
⎢ ⎢ ⎢ ⎢ ⎢ ⎢132011190+01+14+(119)⎥ ⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢100131902+130+191+0⎥ ⎥ ⎥ ⎥ ⎥A
⎢ ⎢ ⎢ ⎢ ⎢1320111900259⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢1001319053191⎥ ⎥ ⎥ ⎥ ⎥A
Applying R1R13R2
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢13(0)33(1)23(119)0111900253⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢13(13)03(19)03(0)1319053191⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢10530111900259⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢01301319053191⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
Applying R3925R3
⎢ ⎢ ⎢ ⎢ ⎢105301119001⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢01301319035125925⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
Applying R2R2+119R3
⎢ ⎢ ⎢ ⎢ ⎢10530+119(0)1+119(0)119+119(1)001⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢013013+119(35)19+119(125)0+119(925)35125925⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
⎢ ⎢ ⎢1053010001⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢013025425112535125925⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
Applying R1R153R3
⎢ ⎢ ⎢153(0)053(0)5353(1)010001⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢053(35)1353(125)053(925)25425112535125925⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
100010001=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢556153525425112535125925⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
I=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢556153525425112535125925⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
I=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢1253525425112535125925⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
This is similar to I=A1A
Hence, A1=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢1253525425112535125925⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon