wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using elementary transformations, find the inverse of matrix 201510013, if it exists.


Open in App
Solution

Let A=201510013
We know that A=IA
201510013=100010001A
Applying R112R1
⎢ ⎢ ⎢1012510013⎥ ⎥ ⎥=⎢ ⎢ ⎢1200010001⎥ ⎥ ⎥A
Applying R2R25R1
⎢ ⎢ ⎢ ⎢ ⎢ ⎢101255(1)15(0)05(12)013⎥ ⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢120005(12)15(0)05(0)001⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
⎢ ⎢ ⎢ ⎢ ⎢10120152013⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢1200(52)10001⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
Applying R3R3R2
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢10120152011352⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢1200(52)100+520110⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢101201520012⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢1200(52)105211⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
Applying R32R3
⎢ ⎢ ⎢ ⎢ ⎢10120152001⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢1200(52)10522⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
Applying R1R1+12R3
⎢ ⎢ ⎢ ⎢ ⎢1+12(0)0+12(0)12+12(1)0152001⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢12+12(5)0+12(2)0+12(2)5210522⎥ ⎥ ⎥ ⎥ ⎥A
⎢ ⎢ ⎢1000152001⎥ ⎥ ⎥=⎢ ⎢ ⎢3115210522⎥ ⎥ ⎥A
Applying R2R252R3
⎢ ⎢ ⎢100052(0)152(0)5252(1)001⎥ ⎥ ⎥=⎢ ⎢ ⎢3115252(5)152(2)052(2)522⎥ ⎥ ⎥A
100010000=⎢ ⎢ ⎢31130265522⎥ ⎥ ⎥A
I=3111565522A
This is similar to I=A1A
Thus, A1=3111565522

flag
Suggest Corrections
thumbs-up
20
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon