Using elementary transformations, find the inverse of matrix [2−3−12], if it exists.
Open in App
Solution
Let A=[2−3−12]
We know that A=IA ⇒[2−3−12]=[1001]A
Applying R1→R1+R2 ⇒[2+(−1)−3+2−12]=[1+00+101]A ⇒[1−1−12]=[1101]A
Applying R2→R2+R1 ⇒[1−11+(−1)2+(−1)]=[110+11+1]A ⇒[1−101]=[1112]A
Applying R1→R1+R2 ⇒[1+0−1+101]=[1+11+212]A ⇒[1001]=[2312]A ⇒I=[2312]A
This is similar to I=A−1A
Thus, A−1=[2312]