wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Using elementary transformations, find the inverse of matrix [2612], if it exists.


Open in App
Solution

Let A=[2612]
We know that A=IA
[2612]=[1001]A
Applying R1R1R2
[216(2)12]=[100101]A
[1412]=[1101]A
Applying R2R2R1
[14112(4)]=[11011(1)]A
[1402]=[1112]A
Applying R212R2
[1401]=11121A
Applying R1R1+4R2
[1+4(0)4+4(1)01]=⎢ ⎢ ⎢1+4(12)1+4(1)121⎥ ⎥ ⎥A
[1001]=13121A
I=13121A
This is similar to I=A1A
Thus, A1=13121

flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon