wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Using elementary transformations, find the inverse of matrix [3152], if it exists.


Open in App
Solution

Let A=[3152]
We know that A=IA
[3152]=[1001]A
Applying R1R125R2
325(5)125(2)52=125(0)025(1)01A
3214552=1002501A
11552=12501A
Applying R2R25R1
⎢ ⎢ ⎢11555(1)25(15)⎥ ⎥ ⎥=⎢ ⎢ ⎢12505(1)15(25)⎥ ⎥ ⎥A
1155521=125051(2)A
11501=12553A
Applying R1R115R2
115(0)1515(1)01=115(5)2515(3)53A
10151501=1(1)253553A
[1001]=1+15553A
[1001]=[2153]A
I=[2153]A
This is similar to I=A1A
Thus, A1=[2153]

flag
Suggest Corrections
thumbs-up
26
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon