We have,
f(x)=limx→π4(xtanx−π4secx)
Using not L; hospital rule because its not make indeterminate forms.
Then,
f(x)=(π4tanπ4−π4secπ4)
=(π4×1−π4×√2)
=π4(1−√2)
(i) Using L ' Hospital's rule find (a) limx→0tanx−xx3 (b) limx→0ex−x−1x2