wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using properties of determinant, prove the following:
∣ ∣ ∣1+a2b22ab2b2ab1a2+b22a2b2a1a2b2∣ ∣ ∣=(1+a2+b2)3

Open in App
Solution

∣ ∣ ∣1+a2b22ab2b2ab1a2+b22a2b2a1a2b2∣ ∣ ∣

R1R1+bR3

∣ ∣ ∣1+a2+b20b(1+a2+b2)2ab1a2+b22a2b2a1a2b2∣ ∣ ∣

(1+a2+b2)∣ ∣ ∣10b2ab1a2+b22a2b2a1a2b2∣ ∣ ∣

R2R2aR3

(1+a2+b2)∣ ∣ ∣10b01+a2+b2a+a3+ab22b2a1a2b2∣ ∣ ∣

(1+a2+b2)2∣ ∣10b01a2b2a1a2b2∣ ∣

Solving the above matrix, we get,

(1+a2+b2)2(1+a2+b2)

(1+a2+b2)3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon