1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Determinant
Using propert...
Question
Using properties of determinants, prove the following
∣
∣ ∣ ∣
∣
1
+
a
2
−
b
2
2
a
b
−
2
b
2
a
b
1
−
a
2
+
b
2
2
a
2
b
−
2
a
1
−
a
2
−
b
2
∣
∣ ∣ ∣
∣
=
(
1
+
a
2
+
b
2
)
3
.
Open in App
Solution
LHS :
∣
∣ ∣ ∣
∣
1
+
a
2
−
b
2
2
a
b
−
2
b
2
a
b
1
−
a
2
+
b
2
2
a
2
b
−
2
a
1
−
a
2
−
b
2
∣
∣ ∣ ∣
∣
Applying
C
1
→
C
1
−
b
C
3
,
C
2
→
C
2
+
a
C
3
, we get,
=
∣
∣ ∣ ∣
∣
1
+
a
2
+
b
2
0
−
2
b
0
1
+
a
2
+
b
2
2
a
b
(
1
+
a
2
+
b
2
)
−
a
(
1
+
a
2
+
b
2
)
1
−
a
2
−
b
2
∣
∣ ∣ ∣
∣
Taking out
(
1
+
a
2
+
b
2
)
common from
C
1
and
C
2
, we get,
=
(
1
+
a
2
+
b
2
)
2
∣
∣ ∣
∣
1
0
−
2
b
0
1
2
a
b
−
a
1
−
a
2
−
b
2
∣
∣ ∣
∣
Applying
R
3
→
R
3
−
b
R
1
+
a
R
2
, we get,
=
(
1
+
a
2
+
b
2
)
2
∣
∣ ∣
∣
1
0
−
2
b
0
1
2
a
0
0
1
+
a
2
+
b
2
∣
∣ ∣
∣
Expanding along
C
1
, we get,
=
(
1
+
a
2
+
b
2
)
2
(
1
+
a
2
+
b
2
)
=
(
1
+
a
2
+
b
2
)
3
= RHS
Suggest Corrections
0
Similar questions
Q.
Using properties of determinant, prove the following:
∣
∣ ∣ ∣
∣
1
+
a
2
−
b
2
2
a
b
−
2
b
2
a
b
1
−
a
2
+
b
2
2
a
2
b
−
2
a
1
−
a
2
−
b
2
∣
∣ ∣ ∣
∣
=
(
1
+
a
2
+
b
2
)
3
Q.
∣
∣ ∣ ∣
∣
1
+
a
2
−
b
2
2
a
b
−
2
b
2
a
b
1
−
a
2
+
b
2
2
a
2
b
−
2
a
1
−
a
2
−
b
2
∣
∣ ∣ ∣
∣
=
(
1
+
a
2
+
b
2
)
3
Q.
Solve:
∣
∣ ∣ ∣
∣
1
+
a
2
−
b
2
2
a
b
−
2
b
2
a
b
1
−
a
2
+
b
2
2
a
2
b
−
2
a
1
−
a
2
−
b
2
∣
∣ ∣ ∣
∣
=
(
1
+
a
2
+
b
2
)
3
.
Q.
By using properties of determination, show that
∣
∣ ∣ ∣
∣
1
+
a
2
−
b
2
2
a
b
−
2
b
2
a
b
1
−
a
2
+
b
2
−
2
b
2
b
−
2
a
1
−
a
2
−
b
2
∣
∣ ∣ ∣
∣
=
(
1
+
a
2
+
b
2
)
3
Q.
The value of determinant
∣
∣ ∣ ∣
∣
1
+
a
2
−
b
2
2
a
b
−
2
b
2
a
b
1
−
a
2
+
b
2
2
a
2
b
−
2
a
1
−
a
2
−
b
2
∣
∣ ∣ ∣
∣
is
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
MATHEMATICS
Watch in App
Explore more
Determinant
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app