(x−y)4=x4−4x3y+6x2y2−4xy3+y4
First take L.H.S (x−y)4
So, the above expression is written as ((x−y)2)2
We know that (x−y)2=x2−2xy+y2,(x−y+z)2=x2+y2+z2−2xy−2yz+2zx
Therefore, (x2−2xy+y2)2
Here, x = x^2, y = 2xy, z = y^2
So, (x2−2xy+y2)2=x4+4x2y2+y4−4x3y−4xy3+2y2x2
= x4−4x3y+6x2y2−4xy3+y4
L.H.S = R.H.S
x4−4x3y+6x2y2−4xy3+y4=x4−4x3y+6x2y2−4xy3+y4
Hence, (x−y)4=x4−4x3y+6x2y2−4xy3+y4 is proved.