wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using the principle of mathematical induction, find tanα+2tan2α+22tan22α+.... to n terms:

A
tanα2ntan(2nα)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cotα2ncot(2nα)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
secα2nsec(2nα)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D cotα2ncot(2nα)
Let P(n): tanα+2tan2α+22tan22α+....+2n1tan(2n1α)=cotα2ncot(2nα) ..... (1)

Step I: For n=1,

L.H.S. of (1)=tanα

=cotαcotα+tanα=cotα(cotαtanα)

=cotα(cotα1cotα)

=cotα2(cot2α12cotα)
=cotα2(cos2αsin2α2cosαsinα)

=cotα2cot2α

=R.H.S. of (1)

Therefore, P(1) is true.

Step II: Assume it is true for n=k, then

P(k):tanα+2tan2α+22tan22α+....+2k1tan(2k1α)

=cotα2kcot(2kα)

Step III: For n=k+1,

P(k+1):tanα+2tan2α+22tan22α+...+2k1tan(2k1α)+2ktan(2kα)=cotα2k+1cot(2k+1α)

L.H.S.=tanα+2tan2α+22tan22α+....+2k1tan(2k1α)+2ktan(2kα)

=cotα2kcot(2kα)+2ktan(2kα) (By assumption step)

=cotα2k(cot(2kα)tan(2kα))

=cotα2k2(cot2(2kα)12cot(2kα))

=cotα2k+1cot(22kα)

=cotα2k+1cot(2k+1α)

=R.H.S.

This show that the result is true for n=k+1.

Hence by the principle of mathematical induction, the result is true for all n N.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon