wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using the quadratic formula solve (a+b)2x2+8(a2-b2)x+16(a-b)2=0 for x.


Open in App
Solution

Step 1: Determining the discriminant

Given equation is (a+b)2x2+8(a2-b2)x+16(a-b)2=0.

The discriminant formula is D=B2-4AC (Considering A,B,C for ease of calculation because the question has variables a,b,c).

Where, for the given equation A=(a+b)2,B=8(a2-b2) and C=16(a-b)2.

Substituting the values in the discriminant formula

D=B2-4ACD=8a2-b22-4a+b216a-b2D=64a4-2a2b2+b4-4a2+2ab+b216a2-2ab+b2D=64a4-128a2b2+64b4-416a2a2-2ab+b2+2aba2-2ab+b2+b2a2-2ab+b2D=64a4-128a2b2+64b4-64a4-2a3b+a2b2+2a2b-4a2b2+2ab3+a2b2-2ab3+b4D=64a4-128a2b2+64b4-64a4-2a2b2+b4D=64a4-128a2b2+64b4-644+128a2b2+64b4D=0

Step 2: Determining the value of x

The quadratic formula is x=-B±B2-4AC2A.

Substituting the values in the quadratic formula

x=-8(a2-b2)2(a+b)2x=-8a+ba-b2(a+b)2x=-4(a-b)(a+b)

Hence, the value of x is -4(a-b)(a+b).


flag
Suggest Corrections
thumbs-up
33
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Q Doesn't Change
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon