Given vertices of ΔABC are A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1)
So, −−→AB=−−→OB−−−→OA=(2→i−→j+4→k)−(→i+2→j+3→k)=→i−3→j+→k and
−−→AC=−−→OC−−−→OA=(4→i+5→j−→k−(→i+2→j+3→k))=3→i+3→j−4→k
Now −−→AB×−−→AC=∣∣
∣
∣∣→i→j→k1−3133−4∣∣
∣
∣∣=9→i+7−−−−−−→j+12→k
⇒∣∣∣−−→AB×−−→AC∣∣∣=√92+72+122=√274
ar(ABC)=12∣∣∣−−→AB×−−→AC∣∣∣=12√274 Sq.units.