Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π3192log√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π336log2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π348log√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bπ3192log2 Let, I=∫π/40(πx−4x2)log(1+tanx)dx=∫π/404x(π4−x)log(1+tan(x))dx Using the property, ∫baf(x)dx=∫baf(a+b−x)dx, we get I=∫π/404(π4−x)xlog(1+tan(π4−x))dx ∵tan(π4−x)=1−tanx1+tanx ⟹I=∫π/404x(π4−x)log(1+tanx+1−tanx1+tanx)dx =∫π/404x(π4−x)log(21+tanx)dx =∫π/404x(π4−x)[log(2)−log(1+tanx)]dx =∫π/404x(π4−x)log(2)dx−∫π/404x(π4−x)log(1+tanx)dx ⟹I=∫π/404x(π4−x)log(2)dx−I ⟹2I=∫π/404x(π4−x)log(2)dx ⟹I=log22∫π/40(πx−4x2)dx =12∣∣∣πx22−4x33∣∣∣π/40log2 By applying limits, we get I=π3192log2