The correct option is A -52
Let, f(z)=sinπ z2+cos π z2(z−1)2.(z−2)
is analytic within C except at z = 1 & z = 2
since z = 1 is a poles of order 2,
∴ Resf(1)=limz→111[d((z−1)2 f(z))dz]
=limz→1ddz[sin π z2+cos π z2z−2]
=limz→1[(z−2)(2πz cos π z2−2πz sin πz2)−(sin π z2+cos π z2)(z−2)2]
=(−1)(−2π)−(−1)
=2π+1
Also, Res f(2)=limz→2[(z−2)f(z)]
=limz→2sin π z2+cos π z2(z−1)2=1
So using Residue theorem,
⇒ I=i×[2 π i[Res f(1)+Res f(2)]]
⇒ I=−2π(2π+1+1)
⇒ I=−52.045≈−52