The correct option is D 198
12+6C3.x3.13+6C4.x2
14+6C5.x.15+6C6.x0.16
=x6+6x5+154+20x3+152+6x+1 ....... (i)
(x−1)6=x6+6C1.x5.(−1)+6C2x4.(−1)2+6C3.x3.(−1)3+6C4.x2.(−1)4+6C5.x.(−1)5+6C6.x.(−1)6
=x6−6x5+15x4−20x3+15x2−6x+1 .... (ii)
Adding (i) and (ii)
(x+1)6+(x−1)6=2[x6+15x4+15x4+15x2+1]
Putting x =√2
(√2+1)6+(√2−1)6=2[(√2)6+15(√2)4+15(√2)2+1]
=2[8+60+30+1]=2×99=198