The correct option is D None of these
x=∑6k=1sin(2kπ7)−icos(2kπ7)
x=1i∑6k=1isin(2kπ7)−i2cos(2kπ7)
x=1i∑6k=1cos(2kπ7)+isin(2kπ7)[∵i2=−1]
Now, cosθ+isinθ=eiθ
∴x=1i∑6k=1ei[2kπ7]
=1iei2kπ7[1+2+3+4+5+6]
=1iei2kπ7×21
=1iei6π
=1i[cos6π+isin6π]
=1i(1+0)
=1i=1i×ii
=ii2=−i