Value of the integral I=∫10x(1−x)ndx=
I=∫10x(1−x)ndx I=∫10x(1−x)ndx=∫10(1−x)(xn)dx =∫10(xn−xn+1)dx =∫10xndx−∫10xx+1dx =xnn+1|10−xn+1n+2|10 =1n+1−1n+2 =(n+2)−(n+1)(n+1)(n+2)=1(n+1)(n+2)
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.
Find the value of expression ∑ni=1∑ij=1∑jk=16.