values of x for which the sixth term of the expansion of
E=(3log3√9|x−2|+7(15)log7[(4).3|x−2|−9])7 is 567, are
Put y=3log3√9|x−2|
⇒ log3y=log3√9|x−2|
⇒y=√9|x−2|=3|x−2|
Now, put z=7(15)log7[(4).3|x−2|−9]
log7z=15log7[(4).3|x−2|−9]
=(log7[(4).3|x−2|−9])15
⇒z=[(4).3|x−2|−9]15
Now, E=(y+z)7 and
6th term is given by
t6=7C5y7−5z5=21(3|x−2|)2{(4).3|x−2|−9}
⇒567=21(32|x−2|){(4).3|x−2|−9}
⇒27=[(4)33|x−2|]−[(9)(32|x−2|)]
⇒27=(4)33|x−2|−(9)32|x−2|
⇒4u3−9u2−27=0;u=3|x−2|
note that u=3 satisfies this equation
3|x−2|=3⇒|x−2|=1⇒x−2=±1
x=2±1=3or1.