Verify that x3+ y3+ z3- 3xyz = 12((x + y + z)[(x−y)2 + (y−z)2 + (z−x)2]
∵ x3 + y3 + z3- 3xyz = (x + y + z)(x2 + y2+z2- xy - yz -zx)
∴ RHS = 12(x + y + z)(2 x2 + 2 y2 + 2 z2- 2xy -2yz -2zx)
= 12(x + y + z)(x2 + x2 +y2 + y2 +z2 + z2 - 2xy -2yz -2zx)
= 12(x + y + z)[x2 + y2 - 2xy + y2 +z2 -2yz + z2 + x2 -2zx]
= 12(x + y + z)[(x2 + y2 - 2xy) + (y2 +z2 -2yz) + (z2+ x2 -2zx)]
= 12(x + y + z)[(x−y)2 + (y−z)2 + (z−x)2 ] ... (answer)