The correct option is
B A.−BTo solve this question, we will need De Morgan’s laws (or
Theorems):
(i)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯A+B=¯¯¯¯A⋅¯¯¯¯B
(ii)¯¯¯¯¯¯¯¯¯¯¯¯A⋅B=¯¯¯¯A+¯¯¯¯B
(iii)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯A+¯¯¯¯B=A⋅B
(iv)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯A⋅¯¯¯¯B=A+B
The output is calculated as per the image by using De Morgan's laws mentioned above:
Y=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(¯¯¯¯A+AB)⋅(¯¯¯¯¯¯¯¯AB+B)
⟹Y=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(¯¯¯¯A+AB)+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(¯¯¯¯¯¯¯¯AB+B)
⟹Y=(A⋅¯¯¯¯¯¯¯¯AB)+(AB⋅¯¯¯¯B)
⟹Y=A(¯¯¯¯A+¯¯¯¯B)+0 (As X⋅¯¯¯¯¯X=0)
⟹Y=0+A¯¯¯¯B
⟹Y=A¯¯¯¯B
So the correct answer is option (D) A¯¯¯¯B