What is eutrophication? What are it's side effects?
When aquatic ecosystems experience increased nutrients, the phytoplankton and other photosynthetic plants grow explosively, commonly known as algal blooms. As an outcome, the algal blooms limit the amount of dissolved oxygen required for respiration by other animal and plant species in the water. Oxygen depletion happens when the algae/plant life die and decompose.
When the dissolve oxygen reaches hypoxic levels, the animal and plant species under the water such as shrimp, fish and other aquatic biota suffocate to death. In extreme cases, the anaerobic conditions encourage the growth of bacteria that produces toxins that are deadly to marine mammals and birds. This can bring about aquatic dead zones and lessens biodiversity
Algal blooms are highly toxic and once the water reaches the anaerobic conditions, the growth of more toxic bacterial is promoted. The consequence is extensive deterioration of water quality and decline in the availability of clean drinking water. The dense growth of algal blooms and photosynthetic bacteria in surface waters can also block water systems hence, limiting the availability of piped water.
On this regard, toxic algal blooms have shut down numerous water supply systems across the globe. In 2007, for instance, more than 2 million residents of Wuxi, China could not access piped drinking water for more than a week due to severe attack by algal blooms on Lake Taihu.
The cyanobacteria, also referred to as dinoflagelates which generates red tide, release very powerful toxins with high poison levels in the water even at very low concentrations. The anaerobic conditions created by explosive plant growth in the water also results in the doubling of the toxic compounds.
It can also cause death in humans and animals even at the least concentration when ingested in drinking water. Freshwater algal blooms can threaten livestock health. The toxic compounds can also make their way up the food chain, contributing to various negative health impacts such as cancers.
Biotoxins are linked to increased incidence of neurotoxic, paralytic, diarrhoetic shelfish poisoning in humans, which can lead to death. The shellfish accumulate the poison in their mussles and then poisions humans upon consumption. High nitrogen concentraion in drinking water is associated with the ability of inhibiting blood circulation in infants, a condition known as blue baby syndrome.
One of the main characteristic of eutrophication as pointed out earlier is the increased growth of minute floating plants such as algae and photosynthetic bacteria and the development of extensive and dense mats of floating plants such as Nile cabbage and water hyacinths. Whenever this happens on a water body, fishing is endangered. It simply becomes difficult to set the fishing nets in water and the plants floating on water limits the mobility of boats and other fishing vessels.
The main problem of eutrophication is the algal blooms and other aquatic plants that float on an extensive area of the water surface. It reduces the transparency and navigation in the water which lessens the recreational values and opportunities of the lakes, especially for boating and swimming. Nile cabbage, algal blooms, and water hyacinth can spread over an extensive area along the shores and can sometimes float over the entire surface into the land area.