What is ∫tanxtan2xtan3xdx is equal to?
Find ∫tanxtan2xtan3xdx.
As
tan(3x)=tan(x+2x)⇒tan(3x)=tanx+tan2x1-tanxtan2x∵tan(a+b)=tana+tanb1-tanatanb⇒tan(3x)-tanxtan(2x)tan(3x)=tanx+tan(2x)∴tanxtan(2x)tan(3x)=tan(3x)-tan(x)-tan(2x)
Now,
∫tanxtan2xtan3xdx=∫tan(3x)-tan(x)-tan(2x)dx=13log|sec(3x)|-log|secx|-12log|sec(2x)|+C
Hence, ∫tanxtan2xtan3xdx=13log|sec(3x)|-log|secx|-12log|sec(2x)|+C