When a quantity of particles is to be described, mole is a grouping unit analogous to groupings such as pair, dozen, or gross, in that all of these words represent specific numbers of objects. The main differences between the mole and the other grouping units are the magnitude of the number represented and how that number is obtained. One mole is an amount of substance containing Avogadro's number of particles. Avogadro's number is equal to 602,214,199,000,000,000,000,000 or more simply, 6.02214199 × 10 23 .
Unlike pair, dozen, and gross, the exact number of particles in a mole cannot be counted. There are several reasons for this. First, the particles are too small and cannot be seen even with a microscope. Second, as naturally occurring carbon contains approximately 98.90% carbon-12, the sample would need to be purified to remove every atom of carbon-13 and carbon-14. Third, as the number of particles in a mole is tied to the mass of exactly 12 grams of carbon-12, a balance would need to be constructed that could determine if the sample was one atom over or under exactly 12 grams. If the first two requirements were met, it would take one million machines counting one million atoms each second more than 19,000 years to complete the task.