What is the formula of x3+y3+z3-3xyz?
Write the formula forx3+y3+z3-3xyz.
Add and subtract expressions 3x2yand3xy2 in x3+y3+z3-3xyz.
x3+y3+z3-3xyz=x3+y3+3x2y+3xy2+z3-3xyz-3x2y-3xy2x3+y3+z3-3xyz=x+y3+z3-3xyx+y+z∵(x+y)3=x3+y3+3x2y+3xy2
Use formulau3+v3=(u+v)(u2+v2-uv).
Put u=x+y,v=zin the formula:
x3+y3+z3-3xyz=x+y+zx+y2+z2-x+yz-3xyx+y+z⇒x3+y3+z3-3xyz=x+y+zx+y2+z2-xz-yz-3xyx+y+z∵(x+y)2=(x2+y2+2xy)⇒x3+y3+z3-3xyz=x+y+zx2+y2+2xy+z2-xz-yz-3xyx+y+z⇒x3+y3+z3-3xyz=x+y+zx2+y2+2xy+z2-xz-yz-3xy⇒x3+y3+z3-3xyz=x+y+zx2+y2+z2-xz-yz-xy
Hence, x3+y3+z3-3xyz=x+y+zx2+y2+z2-xz-yz-xy
The expansion of x3+y3+z3-3xyz is
How (x3+y3)+z3-3xyz = [(x+y)3-3xy(x+y)]+z3-3xyz