The correct option is B x(t)=8π∞∑n=−∞δ(t−4n)
Fourier transform of periodic impulse train is also a periodic impulse train
x(t)=∞∑n=−∞δ(t−nTs)
X(ω)=2πTs∞∑n=−∞δ(ω−nωs)
Where, ωs=2πTs
Let us assume, Ts=4
ωs=π2
Then, X(ω)=π2∞∑n=−∞δ(ω−nπ2)
So, 2π∞∑n=−∞δ(t−4n)F.T.⟷∞∑n=−∞δ(ω−nπ2)
2π∞∑n=−∞δ(t−4n)F.T.⟷∞∑n=−∞δ(ω−nπ2)
8π∞∑n=−∞δ(t−4n)F.T.⟷4∞∑n=−∞δ(ω−nπ2)