What is the missing value to proof the identity: 4x2−16y2=(2x−4y)(2x+4y)?
A
4x2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4y(2x−4y)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2x(2x−4y)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
16y2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C2x(2x−4y) To proof the identity: 4x2−16y2=(2x−4y)(2x+4y) Area of full square = area of pink rectangle + area of blue rectangle. i.e., 4x2−16y2=2x(2x−4y)+4y(2x−4y) 4x2−16y2=(2x+4y)(2x−4y) So, the missing value is 4y(2x−4y).