What is the remainder when (32540×42400×3233)+222 is divided by 13?
32540 using the divisibility test for 13 (triplets at odd - triplets at even places) can be written as:
540−32=508. 508 when divided by 13 can be represented as 13k+1 (i.e. when the number is divided by 13, the remainder is 1).
Similarly,
42400=400−42=358=13l+7
3233=233−3=230=13m+9
(13k+1)(13l+7)(13m+9) will give the non-divisible part as (9×7×1)=63
Therefore 63+222= Remainder of 285 when divided by 13 =−1 or 12.