y=xln|x|1+ln|x|
We have:
dydx=x2+y2−xyx2 with y(1)=0
Which is a First Order Nonlinear Ordinary Differential Equation. Let us attempt a substitution of the form:
y=vx
Differentiating wrt x and applying the product rule, we get:
dydx=v+xdvdx
Substituting into the initial ODE we get:
v+xdvdx=x2+(vx)2−x(vx)x2
Then assuming that x≠0 this simplifies to:
v+xdvdx=1+v2−v
∴xdvdx=v2−2v+1
And we have reduced the initial ODE to a First Order Separable ODE, so we can collect terms and separate the variables to get:
∫ 1v2−2v+1 dv=∫ 1x dx
∫ 1(v−1)2 dv=∫ 1x dx
Both integrals are standard, so we can integrate to get:
−1v−1=ln|x|+C
Using the initial condition, −1v−1=ln|x|+C, we get:
−10−1=ln|1|+C⇒1
Thus we have:
−1v−1=ln|x|+1
∴1−v=11+ln|x|
∴v=1−11+ln|x|
=1+ln|x|−11+ln|x|
=ln|x|1+ln|x|
Then, we restore the substitution, to get the General Solution:
yx=ln|x|1+ln|x|
∴y=xln|x|1+ln|x|