wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

What is the value of limx0(1x21sin2x)?

Open in App
Solution

limx0(1x21sin2x)
=limx0(sin2xx2x2sin2x)
Multiply and divide by x2 in denominator, we have
=limx0⎜ ⎜ ⎜sin2xx2x2.x2sin2xx2⎟ ⎟ ⎟
=limx0⎜ ⎜ ⎜ ⎜sin2xx2x4(sinxx)2⎟ ⎟ ⎟ ⎟
limx0sinxx=1
limx0(1x21sin2x)=limx0x2sin2xx4
=limx0(xsinx)(x+sinx)x4
=(limx0xsinxx3)(limx0x+sinxx)
=limx0[(xsinxx3)(x+sinxx)]
Applying L'Hospital rule, we have
limx0(1x21sin2x)=(limx01+cosx1)(limx01cosx3x2)
=(1+11)(limx01cosx3x2)
Again applying L'Hospital rule, we have
=2(limx0sinx6x)
=2×16[limx0sinxx=1]
=13
Hence limx0(1x21sin2x)=13.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon