The correct option is C −7a3+11a2−7a+9
Let 'y' be the term to be added to 6a3+5a−2a2−7 to get 9a2−2a−a3+2
= 6a3+5a−2a2−7+y=9a2−2a−a3+2
Subtracting 6a3+5a−2a2−7 from 9a2−2a−a3+2,
= (−a3+9a2−2a+2) - (6a3−2a2+5a−7)
= (−a3−6a3)+(9a2+2a2)+(−2a−5a)+(2+7),
= −7a3+11a2−7a+9