Let 'M' be the required expression. Then, we have
x2 - xy + y2 - x + y + 3 - M = - x2 + 3y2 - 4xy + 1
Therefore,
M = (x2 - xy + y2 - x + y + 3) - (- x2 + 3y2 - 4xy + 1)
= x2 - xy + y2 - x + y + 3 + x2 - 3y2 + 4xy - 1
Collecting positive and negative like terms together, we get
x2 + x2- xy + 4xy + y2- 3y2 - x + y + 3 - 1
= 2x2 + 3xy- 2y2- x + y + 2