Which of the following is/are true, if z, z1, z2 are complex numbers?
Let z = r (cosθ+isinθ)
¯¯¯¯Z = r (cosθ−isinθ)
Option A: (¯¯¯¯¯¯¯¯Z) = r (cosθ+isinθ) = z
Option B: zn = rn (cosθ+isinθ)n
zn = r (cosθ+isinθ) {Use de moivre's theorem (cosθ+isinθ)n = (cosθ+isinθ) }
(¯¯¯¯¯¯¯Zn) = rn (cosnθ+isinnθ)
(¯¯¯¯Z)n = rn (cosθ−isinθ)n
(¯¯¯¯Z)n = rn (cosnθ+isinnθ) { Use de moivre's theorem (cosθ+isinθ)n = (cosθ−isinθ) }
So, (¯¯¯¯¯¯¯Zn) = (¯¯¯¯Z)n
Let z1 = r1 (cosθ1+isinθ1) = r1 eiθ1
z2 = r2 (cosθ2+isinθ2) = r2 eiθ2
z1.z2 = r1.r2 [(cos(θ1+θ2)+isin(θ1+θ2))]
(¯¯¯¯¯¯¯¯¯¯¯¯z1.z2) = r1.r2 [(cos(θ1+θ2)−isin(θ1+θ2))]
So, We see that
(¯¯¯¯¯¯¯¯¯¯¯¯z1.z2) ≠ z1.z2
Only option A and B are correct.