Which of the following limit is/are equal to unity?
limx→0+√1−e−x−√1−cos x√sin x
limx→0([1+|x|])1|x| (where [.] is G.I.F.)
limx→∞n+1∑k=1k2n∑k=1k2;nϵN
(A) limx→0+(esin x In(tan x))+etan x In(sin x)
limx→0+(esinxx.In(tanx)1x+etanx InxIn(sinx)1x)=1+1=2
(B) limx→0+1−e−x−1+cos x√sinx(√1−e−x+√1−cos x)
limx→0+1−x22!+....,−(1−x1!+x22!.....)√x√sin xx(√1−e−x+√1−cos x)=1
(C) Base is exact 1
(D) limx→∞(n+1)(n+2)(2n+3)6.n(n+1)(2n+1)6=1