Which of the following pairs is/are orthogonal? (c and k are arbitrary constants.)
A
16x2+y2=c and y16=kx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y=x+ce−x and x+2=y+ke−y
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
y=cx2 and x2+2y2=k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
x2−y2=c and xy=k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A16x2+y2=c and y16=kx By=x+ce−x and x+2=y+ke−y Cy=cx2 and x2+2y2=k Dx2−y2=c and xy=k →16x2+y2=c Differentiating w.r.t. x 32x+2ydydx=0 ⇒dydx=m1=−16xy and y16=kx Differentiating w.r.t. x 16y15dydx=k ⇒dydx=m2=k16y15 m1m2=−16xy×k16y15=−xy16×k ⇒m1m2=−xy16×y16x=−1
→y=x+ce−x ⇒dydx=1−ce−x=1−(y−x)=−(y−x−1) ⇒dydx=m1=−(y−x−1) and x+2=y+ke−y ⇒dydx−kdydx⋅e−y=1 ⇒dydx[1−ke−y]=1 ⇒dydx=m2=11−ke−y=1y−x−1 ⇒m1m2=−1
→y=cx2 ⇒dydx=2cx=2x⋅yx2=2yx ⇒dydx=m1=2yx and x2+2y2=k ⇒2x+4ydydx=0 ⇒dydx=m2=−x2y ⇒m1m2=−1
→x2−y2=c ⇒2x−2ydydx=0 ⇒dydx=m1=xy and xy=k ⇒xdydx+y=0 ⇒dydx=m2=−yx ⇒m1m2=−1