The correct options are
A ∫π20cosmx sinm xdx=2∫π20 (cos x)mdx, mϵN
C ∫π20cos 3x+12 cos x−1dx=∫π201−cos 3x1+2 cos xdx
D ∫π20(1+sin 3x1+2sin x)dx=∫π20cos 3x+12 cosx−1dx
(a) L.H.S=2−m∫π20(sin 2x)mdx=2−m2∫π0(sin t)m dt
=2−m∫π20(sin t)mdt=2−m∫π20(cos t)mdt=RHS
(b) I=∫π0(π−x)sin x1+cos2xdx⇒2I=π∫π0sin x1+cos2xdx
⇒2I=2π∫π20sin x1+cos2xdx
⇒I=π∫π20sin x1+cos2xdx=π∫10dt1+t2≠π2∫10dt1+t2
(c) ∫π201−cos 3x1+2 cos xdx=∫π201+cos 3x2 cos x−1dx=1
(d) I=∫π201+sin 3x1+2 sin xdx
Now, using ∫a0f(a−x)dx=∫a0f(x)dx
∫π201+cos 3x2 cos x−1dx=∫π20(cos 2x+cos x)dx=1
∴ ∫π201+sin 3x1+2 sin xdx=∫π201+cos 3x2 cos x−1dx