wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Write down and simplify :
The 14th term of (21027x)132

Open in App
Solution

The general term i.e. (r+1)th term in the expansion of (1+x)n is given by
Tr+1=n(n1)(n2)....(nr+1)r!xr
Now,
(21027x)132=265(127210x)132=265(1x8)132
For T14, r=13

T14=265⎢ ⎢ ⎢ ⎢ ⎢132(1321)(1322)(1323)(1324)(1325)(1326)(1327)(1328)(1329)(13210)(13211)(13212)13!(x8)13⎥ ⎥ ⎥ ⎥ ⎥

=265[13.11.9.7.5.3.1.(1).(3).(5).(7).(9).(11)213.13!(1)13.1813.x13]

=265[1.3.5.7.9.11213.2.4.6.8.10.12.1239.x13]

=265262.(7.3.11)x13

=3.7.8.11.x13

=1848x13

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
What is Binomial Expansion?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon