Write the correct letter from column (2) against column (1): C1 (a)|z−(1+2i)|=5 (b)Re(1z)<12
(c) Arg(z−a)=π/4,a∈R
C2 (i)Straight line (ii) Circle (iii) Exterior of a circle
Open in App
Solution
Ans. (a)→(ii), (b)→(iii), (c)→(i) (b)$ \dfrac { 1 }{ z } =\dfrac { 1 }{ x+iy } =\dfrac { x-iy }{ { x }^{ 2 }+y^{ 2 } }$ $ \therefore Re\left( \dfrac { 1 }{ z } \right) <\dfrac { 1 }{ 2 } \Rightarrow \dfrac { x }{ { x }^{ 2 }+{ y }^{ 2 } } <\dfrac { 1 }{ 2 } $ or 2x<x2+y2 or $ { x }^{ 2 }+{ y }^{ 2 }-2x>0$ or (x−1)2+y2>1 Above represents the exterior of a circle of radius 1 centred at (1,0). (a )Clearing represents a circle centred at (1,2) and of (a) Clearing represents a circle centred at (1,2) and of radius 5 as (x−1)2+(y−2)2=25 (c) $ \tan { ^{ -1 }\dfrac { y }{ x-a } =\dfrac { \pi }{ 4 } } \therefore y=(x-a).\tan { =\dfrac { \pi }{ 4 } } $ or x−y=a i.e a St. line