Write the negation of: p↔(q∨r)
p | q | r | ∼p | ∼q | ∼r | p∧∼q | p∧∼q∧∼r | q∨r | q∨r∧∼p | (p∧∼q∧∼r)∨(q∨r∧∼p) |
T | T | T | F | F | F | F | F | T | F | F |
T | T | F | F | F | T | F | F | T | F | F |
T | F | T | F | T | F | T | F | T | F | F |
T | F | F | F | T | T | T | T | F | F | T |
F | T | T | T | F | F | F | F | T | T | T |
F | T | F | T | F | T | F | F | T | T | T |
F | F | T | T | T | F | F | F | T | T | T |
F | F | F | T | T | T | F | F | F | F | F |
p | q | r | q∨r | p↔(q∨r) | ∼[p↔(q∨r)] |
T | T | T | T | T | F |
T | T | F | T | T | T |
T | F | T | T | T | F |
T | F | F | F | F | T |
F | T | T | T | F | T |
F | T | F | T | F | T |
F | F | T | T | F | T |
F | F | F | F | T | F |