Write the range of the function f(x)=cos[x], where −π2<x<π2
We have, f(x)=cos[x], where −π2<x<π2 Clearly, Range (cos[x])={1, cos 1, cos 2}
The range of the function f(x)=cos[x] for −π2<x<π2 is ([•] denotes Greatest Integer Function)
Range of f(x)=tan(π[x2−x])1+sin(cos x) is (where [x] denotes the greatest integer function)