Let the given polynomial be p(x)=x3−5x2−2x+24.
We will now substitute various values of x until we get p(x)=0 as follows:
Forx=0p(0)=(0)3−5(0)2−(2×0)+24=0−0−0+24=24≠0∴p(0)≠0
Forx=1p(1)=(1)3−5(1)2−(2×1)+24=1−5−2+24=25−7=18≠0∴p(1)≠0
Forx=−2p(−2)=(−2)3−5(−2)2−(2×−2)+24=−8−20+4+24=28−28=0∴p(−2)=0
Thus, (x+2) is a factor of p(x).
Now,
p(x)=(x+2)⋅g(x).....(1)⇒g(x)=p(x)(x+2)
Therefore, g(x) is obtained by after dividing p(x) by (x+2) as shown in the above image:
From the division, we get the quotient g(x)=x2−7x+12 and now we factorize it as follows:
x2−7x+12=x2−4x−3x+12=x(x−4)−3(x−4)=(x−3)(x−4)
From equation 1, we get p(x)=(x+2)(x−3)(x−4).
Hence, x3−5x2−2x+24=(x+2)(x−3)(x−4).