The correct option is B a = 0, b = -36
Let f(x)=4x3+ax2+bx
(x-3) and (x+3) are factors of f(x)
By factor theorem,
f(3) = 0
⇒4(3)3+a(3)2+b(3)=0
⇒108+9a+3b=0
⇒36+3a+b=0
∴b=−3a−36 .........(1)
f(-3) = 0
⇒4(−3)3+a(−3)2+b(−3)=0
⇒−108+9a−3b=0
⇒−36+3a−b=0
∴b=−36+3a .........(2)
From (1) and (2), we get
-3a - 36 = -36 +3a
⇒−6a=0
a=0
from (1), we get:
b = -36 - 3a = -36 - 0
∴b=−36
So, the correct answer is option (b).